STATISTICAL LITERACY: A BRIDGE BETWEEN ACADEMIC LEARNING AND PRACTICE

STATISTICAL LITERACY: A BRIDGE BETWEEN ACADEMIC LEARNING AND PRACTICE

Authors

  • Sarah Tanus Universidade de Sorocaba - Uniso Author
  • Valquíria Miwa Hanai-Yoshida Universidade de Sorocaba - Uniso Author
  • Rogério Augusto Profeta Universidade de Sorocaba - Uniso Author

DOI:

https://doi.org/10.51473/rcmos.v1i1.2025.867

Abstract

Statistical education is becoming increasingly relevant in the digital age, marked by data-driven decision-making. However, it still faces persistent challenges. Research conducted by the Program for the International Assessment of Adult Competencies (PIAAC) and the Program for International Student Assessment (PISA) highlights the difficulties many adults face in interpreting statistical data. This article on statistical education in higher education is based on a survey that analyzed the perceptions of professionals from the Sorocaba Metropolitan Region about the implementation and use of statistical knowledge in the professional environment. The study aimed to identify the critical points for implementing and disseminating statistical techniques and thinking in companies, exploring the gap between academic training in statistics and its practical application. The quantitative methodology was based on a structured questionnaire completed by 410 professionals from the region, and the data analysis categorized the companies, represented by the professionals' responses, into three levels of statistical proficiency: beginner, intermediate, and advanced. The results indicate that the main challenges to implementing statistics in companies include the need for data culture and limited statistical competence. It is concluded that the development of statistical literacy can overcome the barriers between available statistical tools and their application in organizations. This study aligns with the perspective of promoting conscious statistical education and is focused on ways to mobilize knowledge in the service of people and their projects.

Downloads

Download data is not yet available.

Author Biographies

  • Sarah Tanus , Universidade de Sorocaba - Uniso

    Sarah Tanus é professora na Universidade de Sorocaba desde 1995. Possui experiência como docente do ensino superior, ministrando disciplinas como Cálculo Diferencial e Integral, Estatística Descritiva e Inferencial, Equações Diferenciais e Matemática Financeira. É doutora pelo programa em Processos Tecnológicos e Ambientais pela Universidade de Sorocaba, mestre em Educação Matemática pela Universidade Estadual Paulista Júlio de Mesquita Filho, Unesp, em Rio Claro, e graduada em Matemática, com licenciatura, pela mesma instituição, Unesp, em Presidente Prudente. Além disso, possui formação complementar em Tópicos de Aperfeiçoamento em Estatística pelo Instituto de Matemática e Estatística da Universidade de São Paulo (IME USP) e concluiu o curso de curta duração "Big Data: Transformando Dados em Informação" no Insper.

    https://orcid.org/0009-0008-5970-8392

  • Valquíria Miwa Hanai-Yoshida, Universidade de Sorocaba - Uniso

    Possui doutorado em Ciências Farmacêuticas pela Universidade Estadual Paulista Júlio de Mesquita Filho - Unesp (2014), mestrado em Ciências Farmacêuticas pela Universidade de Sorocaba (2009) e graduação em Farmácia e Bioquímica pela Universidade Estadual Paulista Júlio de Mesquita Filho (1994). Atualmente está como Coordenadora do Programa de Pós-Graduação pesquisadora e professora titular da Universidade de Sorocaba. Tem experiência na área de Farmácia, com ênfase em Farmacotecnia, atuando principalmente nas áreas de cosmetologia, farmacotecnia, instrumentação analítica, pesquisa e desenvolvimento de fármacos e medicamentos, e tecnologia farmacêutica. Tem experiência na área multiprofissional, multidisciplinar e Interdisciplinar, com ênfase em pesquisa e desenvolvimento de indicadores de desempenho.

    https://orcid.org/0000-0003-2022-4485

References

AGÊNCIA METROPOLITANA DE SOROCABA (AMS). Caderno final de propostas PDUI MRS 2022. Sorocaba, jun,2022. Available at: https://www.agemsorocaba.sp.gov.br/wpcontent/uploads/2024/02/CADERNOFINALPROPOSTASPDUI MRS2022.pdf. Accessed on: 11 fev. 2024.

AHMED, S.; HASSAN, M. Survey and case investigations on application of quality management tools and techniques in SMIs. International Journal of Quality and Reliability Management, v. 20, n. 7, p. 795826, 2003. DOI: 10.1108/02656710310491221 DOI: https://doi.org/10.1108/02656710310491221

AMERICAN STATISTICAL ASSOCIATION (ASA). Conference on Statistical Practice. 2022. Available at: https://l1nq.com/eDSbT. Accessed on: Jan 18, 2022.

BATANERO, C. Sentido Estadístico: componentes y desarrollo. In: CONTRERAS, J. M.; CANADAS, G. R.; GEA, M. M.; ARTEAGA, P. (Eds.) Actas de las Jornadas Virtuales en Didáctica de la Estadística, Probabilidad y Combinatoria, 1., 2013, Granada: Departamento de Didáctica de la Matemática de la Universidad de Granada, 2013. p. 55–61. Available at: https://www.researchgate.net/publication/277007452_Sentido_estadistico_Componentes_y_desarrollo. Accessed on: Jan10, 2024.

BEST, J. More Damned Lies and Statistics: How Numbers Confuse Public Issues. California: University of California Press. 2004. DOI: https://doi.org/10.1525/9780520930025

BJERKE, F.; HERSLETH, M. Introducing statistical thinking to the food industry: facilitating and inhibiting factors. Quality Management Journal, v. 8, n. 3, p. 4960, 2001. DOI: 10.1080/10686967.2001.11918966 DOI: https://doi.org/10.1080/10686967.2001.11918966

BRASIL. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira (Inep). Censo da Educação Básica 2022: notas estatísticas. Brasília, DF: Inep, 2022.

BRAUNER, S.; MURAWSKI, M.; BICK, M. The development of a competence framework for artificial intelligence professionals using probabilistic topic modelling. Journal of Enterprise Information Management, v. 38, n. 1, p. 197-218, 2023. DOI: 10.1108/JEIM-09-2022-0341. DOI: https://doi.org/10.1108/JEIM-09-2022-0341

BROUSSEAU, G. Os diferentes papéis do professor. In: PARRA, C.; SAIZ, I. Didática da Matemática: Reflexões. São Paulo: Autêntica, 2007.

CAZORLA, I. M.; GIORDANO, C. C. O papel do letramento estatístico na implementação dos temas contemporâneos transversais da BNCC. In: MONTEIRO, Carlos Eduardo Ferreira; CARVALHO, Liliane Maria Teixeira Lima de (orgs.). Temas emergentes em letramento estatístico [recurso eletrônico]. Recife: UFPE, 2021. p. 88-111. DOI: https://doi.org/10.51359/978-65-5962-018-0.3

CAZORLA, I. M.; KATAOKA, V. Y.; SILVA, C. B. D. Trajetórias e perspectivas da educação estatística no Brasil: um olhar a partir do GT12. 1st ed. Campinas: Mercado de Letras, 2010. v. I. DOI: 10.23925/1983-3156.2020v22i1p584-609 DOI: https://doi.org/10.23925/1983-3156.2020v22i1p584-609

CHRISTENSEN, B. Anforderungen an eine Statistik: Ausbildung im 21. Jahrhundert vor dem Hintergrund von Statistical (Il-)Literacy. Springer-Verlag GmbH Germany: Springer Nature, 2019. DOI: 10.1007/s11943-019-00263-7 DOI: https://doi.org/10.1007/s11943-019-00263-7

CIDADES SUSTENTÁVEIS. Sorocaba - Cidades Sustentáveis. Available at: https://www.cidadessustentaveis.org.br/painelIndicadoresCidade/detalhes/3849. Accessed on: Nov 14, 2024.

COLEMAN, S. Y. Statistical Thinking in the Quality Movement + 25 Years. The TQM Journal, v. 25, n. 6, p. 25(6), 597605, 2013. DOI: 10.1108/TQM-06-2013-0075 DOI: https://doi.org/10.1108/TQM-06-2013-0075

DEMING, W. E. A nova economia para a indústria, o governo e a educação. Rio de Janeiro: Qualitymark, 1997.

DESENVOLVE SP. Região Administrativa Sorocaba. 2023. Available at: https://rebrand.ly/vwzqh5f. Accessed on: Jan 6, 2024.

DUGGAL, A. S. et al. A sequential roadmap to Industry 6.0: Exploring future manufacturing trends. IET Communications, v. 16, n. 5, p. 521531, 2022. DOI: 10.1049/cmu2.12284 DOI: https://doi.org/10.1049/cmu2.12284

FREIRE, P. Pedagogia do oprimido. 12th ed. Rio de Janeiro: Paz e Terra, 1983.

FUNDAÇÃO SISTEMA ESTADUAL DE ANÁLISE DE DADOS. SEADE Censo 2022. São Paulo: Fundação Seade, 2022. Available at: https://censo2022.seade.gov.br/. Accessed on: Feb 11, 2024.

GAL, I. Adults’ statistical literacy: Meanings, Components, Responsabilities. International Review, v. 70, n. 1, p. 125. 2002. DOI: 10.2307/1403713 DOI: https://doi.org/10.2307/1403713

GAL, I. Promoting statistical literacy: challenges and reflections with a Brazilian perspective. In: MONTEIRO, Carlos Eduardo Ferreira; CARVALHO, Liliane Maria Teixeira Lima de (orgs.). Temas emergentes em letramento estatístico [recurso eletrônico]. Recife: UFPE, 2021. p. 3759. DOI: https://doi.org/10.51359/978-65-5962-018-0.1

GAL, I., GEIGER, V. Welcome to the era of vague news: a study of the demands of statistical and mathematical products in the COVID-19 pandemic media. Educational Studies in Mathematics 111, 5–28 (2022). DOI: 10.1007/s10649-022-10151-7 DOI: https://doi.org/10.1007/s10649-022-10151-7

GAL, I.; OGRAJENSEK, I. Official statistics and statistics education: Bridging the gap. Statistical Journal of Official Statistics, v. 33, n. 1, Sciendo, 2017, p. 79-100. DOI: 10.1515/jos-2017-0005 DOI: https://doi.org/10.1515/jos-2017-0005

GERHART, N.; RASTEGARI, E.; COLE, E. Analytics: What Do Business Majors Need and Where Do They Get It? Journal of Statistics and Data Science Education, v. 1, p. 1–28, 2024. DOI: 10.1080/26939169.2024.2393427 DOI: https://doi.org/10.1080/26939169.2024.2393427

GIORDANO, C. C. Statistical Literacy and Interdisciplinary Projects in the High School: Discussing the Didactical Contract. Journal of Modern Education Review, v. 8, n. 7, p. 497–509, jul. 2018. DOI: 10.15341/jmer(2155-7993)/07.08.2018/002

GOULD, R. Data literacy is statistical literacy. Statistics Education Research Journal, v. 16, p. 22-25, 2017. DOI: 10.52041/serj.v16i1.209 DOI: https://doi.org/10.52041/serj.v16i1.209

HAN, C. A Literature Review of Statistical Teaching Research in Big Data Environment. Asian Journal of Education and eLearning, v. 9, n. 5, out. 2021. DOI: 10.24203/ajeel.v9i5.6738 DOI: https://doi.org/10.24203/ajeel.v9i5.6738

HIJAZI, R.; SAEED, R.; ALFAKI, I. Role of statisticians in building the UAE knowledge economy Role of statisticians in building the UAE knowledge economy. Electronic Journal of Applied Statistical Analysis. 12. 303-319. 2019. DOI: 10.1285/i20705948v12n1p303

HOERL, R. W.; SNEE, R. D. Closing the gap: Statistical engineering links statistical thinking, methods, tools. Quality Progress, v. 43, n. 5, 2010.

HOERL, R. W.; SNEE, R. D. Statistical Thinking: improving business performance. 3rd ed. New Jersey: John Wiley&Sons, 2012. DOI: https://doi.org/10.1002/9781119202721

HOERL, R. W.; SNEE, R. D.; DE VEAUX, R. D. Applying statistical thinking to “Big Data” problems. in Wiley Interdisciplinary Reviews: Computational Statistics, v. 6, n. 4, 222–232. 2014. DOI: 10.1002/wics.1306 DOI: https://doi.org/10.1002/wics.1306

INTERNATIONAL INFORMATION SYSTEM SECURITY CERTIFICATION CONSORTIUM (ISC)². ISC2 Cybersecurity Workforce Study: exposes workforce challenges amidst economic uncertainty, skills gap and the emergence of next-generation artificial intelligence. [S.l.]: ISC2, 2023. Available at: https://www.isc2.org/research. Accessed on: Apr 2, 2024.

INVESTE SÃO PAULO. PIB da Região Metropolitana de Sorocaba cresce 0,7% no primeiro trimestre. Available at: https://www.investe.sp.gov.br/noticia/pib-da-regiao-metropolitana-de-sorocaba-cresce-0-7-no-primeiro-trimestre/. Accessed on: Nov 14, 2024.

KRISHNAMOORTHI, K. S. Statistical Thinking for Engineers: What, Why, and How? Industrial Engineering and Engineering Management. IEEE 17Th International Conference on Industrial Engineering and Engineering Management, Xiamen, China, 2010. DOI: https://doi.org/10.1109/ICIEEM.2010.5646479

LEITE, E. B.; ARAUJO, C. Mapa da Inovação, 2020. Available at: https://rb.gy/og3fo. Accessed on: Feb 11, 2024.

LOPES, C. E. et al. Um histórico da produção científica brasileira em Educação Estatística. In: GIORDANO, C. C.; KISTEMANN JUNIOR, M. A. (orgs.). História da Educação Estatística Brasileira: pesquisa e pesquisadores. São Paulo: Akademy, 2023. p. 1340.

MAKAR. K.; RUBIN, A. A framework for thinking about informal Statistical inference. Statistics Education Research Journal, v. 8, n. 1, p. 82-105, 2009. DOI: 10.52041/serj.v8i1.457 DOI: https://doi.org/10.52041/serj.v8i1.457

MAKRYMICHALOS, M. et al. Statistical thinking and its role for industrial engineers and managers in the 21st century, Managerial Auditing Journal, v. 20, n. 4, p. 354363. 2005. DOI: 10.1108/02686900510592043 DOI: https://doi.org/10.1108/02686900510592043

MALAGUERRA, C.; MACDONALD, A. Statistics as instruments for prosperous, transparent and democratic societies. Statistical Journal of the IAOS, v. 32, n. 4, p. 757-762, 2016. DOI: 10.3233/SJI-161031 DOI: https://doi.org/10.3233/SJI-161031

MONTGOMERY, D. C. A modern framework for achieving enterprise excellence. International Journal of Lean Six Sigma, v. 1, n. 1, p. 56-65. 2010. DOI: 10.1108/20401461011033167 DOI: https://doi.org/10.1108/20401461011033167

MYERS, J. Statistics is the fastest-growing undergraduate STEM degree (2015, February 3) retrieved 17 November 2024. Available at: https://phys.org/news/2015-02-reveals-statistics-fastest-growing-degree.htm. Accessed on: May 20, 2023

NIKIFORIDOU, Z.; LEKKA, A.; PANGE, J. Statistical literacy at university level: the current trends. Procedia - Social and Behavioral Sciences, v. 9, p. 795-799, 2010. DOI: 10.1016/j.sbspro.2010.12.236 DOI: https://doi.org/10.1016/j.sbspro.2010.12.236

OECD. O futuro da educação e das competências. Educação 2030. 2018. Available at: http://go.uv.es/1fDpQnn. Accessed on: Feb 16, 2024

PETOCZ, P.; REID, A.; GAL, I. Statistics Education Research. In: BEN-ZVI, D.; MAKAR, K.; GARFIELD, J. (Eds.). International Handbook of Research in Statistics Education. Cham: Springer, 2018. p. 71-102. DOI: 10.1007/978-3-319-66195-7_3 DOI: https://doi.org/10.1007/978-3-319-66195-7_3

PIO, L. F. Sorocaba recebe milhares de estudantes universitários da região todos os dias. Jornal Cruzeiro do Sul, Sorocaba, 06 nov. 2023. Available at: https://www.jornalcruzeiro.com.br. Accessed on: Oct 13, 2024.

PRODROMOU, T. Statistical Literacy in data revolution era in MONTEIRO, C. E. F.; CARVALHO, L. M. T. L. de (Org.). Temas emergentes em letramento estatístico. Recife: UFPE, 2021.

RADERMACHER, W. J. Literacy in statistics for the public discourse. Statistical Journal of the IAOS, 37, 747–752. 2021. Disponível em: https://content.iospress.com/articles/statistical-journal-of-the-iaos/sji210852. Acesso em 16 fev. 2024 DOI: https://doi.org/10.3233/SJI-210852

RADERMACHER, W. J. Statistical awareness promoting a data culture. Statistical Journal of the IAOS, v. 38, n. 2, p. 453-461, 2022. DOI: 10.3233/SJI-220956 DOI: https://doi.org/10.3233/SJI-220956

RIBEIRO, F. et al. O novo rural e a pertinência da Embrapa Hortaliças para a Região Metropolitana de Sorocaba: uma agenda estratégia e prioritária. In: KON, Anita (org.) O Brasil em transição: Economia Contemporânea. Rio de Janeiro: Alta Books, 2020.

RIDGWAY, J. Implications of the data revolution for statistics education, International Statistical Review. 84(3) (2016), 528–549. DOI: 10.1111/insr.12110 DOI: https://doi.org/10.1111/insr.12110

ROSS, P.; MAYNARD, K. Towards a 4th industrial revolution. Work & Place, v. 9, n. 2, p. 159161, 2021. DOI: 10.1080/17508975.2021.1873625 DOI: https://doi.org/10.1080/17508975.2021.1873625

SIMICEVIC, V. Statistical approach to intelligent managerial decision making. Annals of DAAAM & Proceedings, 687688 (2007). Available at: https://encurtador.com.br/cfsx1. Accessed on: Feb 14, 2024.

STOUDT, S.; SCOTINA, A. D.; LUEBKE, K. Supporting Statistics and Data Science Education with learnr. Technology Innovations in Statistics Education, v. 14, n. 1, 2022. DOI: 10.5070/T514156264 DOI: https://doi.org/10.5070/T514156264

VANCE, E. A. et al. Promoting Statistical Practice and Collaboration in Developing Countries. 1st ed. Chapman and Hall/CRC, 2022. DOI: https://doi.org/10.1201/9781003261148-3

VIEIRA, S. Estatística Básica. São Paulo: Cengage Learning, 2019.

WATSON, J. Statistical Literacy at School: Growth and Goals. 1. ed. 1-306. 2013. DOI: 10.4324/9780203053898 DOI: https://doi.org/10.4324/9780203053898

WILD, C. J.; PFANNKUCH, M. Statistical thinking in empirical enquiry. International Statistical Review, v. 67, n. 3, p. 223-248, 1999. DOI: 10.1111/j.1751-5823.1999.tb00442.x DOI: https://doi.org/10.1111/j.1751-5823.1999.tb00442.x

XU, X.; LU, Y.; VOGEL-HEUSER, B.; LIHUI WANG, L. Industry 4.0 and Industry 5.0—Inception, conception and perception. Journal of Manufacturing Systems, v. 61, p. 530-535, 2021. DOI: 10.1016/j.jmsy.2021.10.006 DOI: https://doi.org/10.1016/j.jmsy.2021.10.006

Published

2025-03-10

How to Cite

TANUS , Sarah; HANAI-YOSHIDA, Valquíria Miwa; PROFETA, Rogério Augusto. STATISTICAL LITERACY: A BRIDGE BETWEEN ACADEMIC LEARNING AND PRACTICE: STATISTICAL LITERACY: A BRIDGE BETWEEN ACADEMIC LEARNING AND PRACTICE. Multidisciplinary Scientific Journal The Knowledge, Brasil, v. 1, n. 1, 2025. DOI: 10.51473/rcmos.v1i1.2025.867. Disponível em: https://submissoesrevistacientificaosaber.com/index.php/rcmos/article/view/867.. Acesso em: 12 mar. 2025.